Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation
ثبت نشده
چکیده
A wide range of low level vision problems have been formulated in terms of finding the most probable assignment of a Markov Random Field (or equivalently the lowest energy configuration). Perhaps the most successful example is in the case of stereo vision. For the stereo problem, it has been shown that finding the global optimum is NP hard but good results have been obtained using a number of approximate optimization algorithms. In this paper we show that for standard benchmark stereo pairs, the global optimum can be found in a few minutes using a variant of the belief propagation (BP) algorithm. We extend previous theoretical results on reweighted belief propagation to account for possible ties in the beliefs and using these results we obtain easily checkable conditions that guarantee that the BP disparities are the global optima. We verify experimentally that these conditions are met for the standard benchmark stereo pairs and discuss the implications of our results for further progress in stereo.
منابع مشابه
Comparison of Energy Minimization Algorithms for Highly Connected Graphs
Algorithms for discrete energy minimization play a fundamental role for low-level vision. Known techniques include graph cuts, belief propagation (BP) and recently introduced tree-reweighted message passing (TRW). So far, the standard benchmark for their comparison has been a 4-connected grid-graph arising in pixel-labelling stereo. This minimization problem, however, has been largely solved: r...
متن کاملA LSS-based registration of stereo thermal-visible videos of multiple people using belief propagation
In this paper, we propose a novel stereo method for registering foreground objects in a pair of thermal and visible videos of close-range scenes. In our stereo matching, we use Local Self Similarity (LSS) as similarity metric between thermal and visible images. In order to accurately assign disparities to depth discontinuities and occluded Region Of Interest (ROI), we have integrated color and ...
متن کاملEfficient Loopy Belief Propagation Using the Four Color Theorem
Recent work on early vision such as image segmentation, image denoising, stereo matching, and optical flow uses Markov Random Fields. Although this formulation yields an NP-hard energy minimization problem, good heuristics have been developed based on graph cuts and belief propagation. Nevertheless both approaches still require tens of seconds to solve stereo problems on recent PCs. Such runnin...
متن کاملA Comparative Study of Energy Minimization Methods for Markov Random Fields
One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While these problems can be elegantly expressed in the language of Markov Random Fields (MRF’s), the resulting energy minimization problems were widely viewed as intractable. Recen...
متن کاملApplying Convex Optimization Techniques to Energy Minimization Problems in Computer Vision
APPLYING CONVEX OPTIMIZATION TECHNIQUES TO ENERGY MINIMIZATION PROBLEMS IN COMPUTER VISION Arvind Bhusnurmath C.J.Taylor Energy minimization is an important technique in computer vision that has been applied to practically all early vision problems. Several methods have been proposed to solve the problem and to date, the most popular ones have been discrete optimization approaches such as graph...
متن کامل